Modeling and Optimization of Hybrid HIR Drying Variables for Processing of Parboiled Paddy Using Response Surface Methodology

Authors

  • Ebrahim Taghinezhad Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, I.R. IRAN
  • Mohammad Kaveh Faculty of Agriculture and Resources, University of Mohaghegh Ardabili, Ardabil, I.R. IRAN
Abstract:

The effects of hot air temperature (40, 50 and 60 oC) and Radiation Intensity (RI) (0.21, 0.31 and 0.41 w/cm2) on the response variables (drying time, Head Parboiled Rice Yield (HPRY), color value and hardness)) of parboiled rice were investigated. The drying was performed using hybrid hot air–infrared drying. The optimization of drying variables and the relationship between response variables and the influence factors were analyzed using response surface methodology (RSM).  Based on RSM results, the best mathematical model for prediction of HPRY, hardness and color value and drying time of samples was linear(R2= 0.96), quadratic(R2= 0.99), linear(R2= 0.93) and linear(R2= 0.99) equation, respectively. The HPRY (62.13- 68.13%) and hardness (130.27- 247.3 N) increased with increasing drying temperature and RI, while the color value (19.77- 18.03) and drying time (59.72- 34.41 min) decreased. The optimized parameters of drying were obtained 55 oC drying temperature and 0.41 w/ cm2 RI.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

preparation and characterization of new co-fe and fe-mn nano catalysts using resol phenolic resin and response surface methodology study for fischer-tropsch synthesis

کاتالیزورهای co-fe-resol/sio2و fe-mn-resol/sio2 با استفاده از روش ساده و ارزان قیمت همرسوبی تهیه شدند. از رزین پلیمری resol در فرآیند تهیه کاتالیزور استفاده شد.

Optimization and Modeling of CuOx/OMWNT’s for Catalytic Reduction of Nitrogen Oxides by Response Surface Methodology

A series of copper oxide (CuOx) catalysts supported by oxidized multi-walled carbon nanotubes (OMWNT’s) were prepared by the wet impregnation method for the low temperature (200 °C) selective catalytic reduction of nitrogen oxides (NOx) using NH3 as a reductant agent in the presence of excess oxygen. These catalysts were characterized by FTIR, XRD, SEM-EDS, and H2-TPR meth...

full text

Drying of Matricaria recutita Flowers in Vibrofluidized Bed Dryer: Optimization of Drying Conditions Using Response Surface Methodology

Drying of Matricaria recutita flower was investigated experimentally in a VibroFluidized Bed Dryer (VFBD). The aim of the present work was to optimize the best operating conditions for the drying of Matricaria recutita flower in the VFBD based on experimental design techniques. Response Surface Methodology (RSM) and Central Composite Design (CCD) based on 4-variable with 5-level have been e...

full text

Modeling and Optimization of Arsenic (III) Removal from Aqueous Solutions by GFO Using Response Surface Methodology

Arsenic is a highly toxic element for human beings, which is generally found in groundwater. Dissolved Arsenic in water can be seen as As+3 and As+5 states. The adsorption process is one of the available methods to remove Arsenic from aqueous solutions. Thus, this papers aims at removing Arsenic (III) from aqueous solutions through adsorption on iron oxide granules. The relation among four inde...

full text

Modeling and Optimization of Arsenic (III) Removal from Aqueous Solutions by GFO Using Response Surface Methodology

Arsenic is a highly toxic element for human beings, which is generally found in groundwater. Dissolved Arsenic in water can be seen as As+3 and As+5 states. The adsorption process is one of the available methods to remove Arsenic from aqueous solutions. Thus, this papers aims at removing Arsenic (III) from aqueous solutions through adsorption on iron oxide granules. The relation among four inde...

full text

Modeling and Optimization of Nano-bubble Generation Process Using Response Surface Methodology

In this paper, size distribution of nano-bubbles was measured by the reliable and fast method of laser diffraction technique. Nano-bubbles were produced using a nano-bubble generator designed and made based on hydrodynamic cavitation phenomenon in Venturi tubes. A Central Composite Design with Response Surface Methodology was used to conduct a five factor, five level factorial experimental desi...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 38  issue 4

pages  251- 260

publication date 2019-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023